UrbanPro

Take Class 12 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

(i)

(ii)

(iii)

Asked by Last Modified  

1 Answer

Learn Exercise 5.8

Follow 1
Answer

Please enter your answer

By Rolle’s Theorem, for a function, if (a) f is continuous on (b) f is differentiable on (a, b) (c) f (a) = f (b) then, there exists some c ∈ (a, b) such that Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis. (i)...
read more

By Rolle’s Theorem, for a function, if

(a) f is continuous on [a, b]

(b) f is differentiable on (a, b)

(c) f (a) = f (b)

then, there exists some c ∈ (a, b) such that

Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

(i)

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5 and x = 9

f (x) is not continuous in [5, 9].

The differentiability of f in (5, 9) is checked as follows.

Let n be an integer such that n ∈ (5, 9).

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x = n

f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s Theorem.

Hence, Rolle’s Theorem is not applicable for.

(ii)

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = −2 and x = 2

f (x) is not continuous in [−2, 2].

The differentiability of f in (−2, 2) is checked as follows.

Let n be an integer such that n ∈ (−2, 2).

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x = n

f is not differentiable in (−2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s Theorem.

Hence, Rolle’s Theorem is not applicable for.

(iii)

It is evident that f, being a polynomial function, is continuous in [1, 2] and is differentiable in (1, 2).

f (1) ≠ f (2)

It is observed that f does not satisfy a condition of the hypothesis of Rolle’s Theorem.

Hence, Rolle’s Theorem is not applicable for.

read less
Comments

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Recommended Articles

Radhe Shyam is a highly skilled accounts and finance trainer with 8 years of experience in teaching. Accounting is challenging for many students and that’s where Radhe Shyam’s expertise comes into play. He helps his students not only in understanding the subject but also advises them on how to overcome the fear of accounts...

Read full article >

Mohammad Wazid is a certified professional tutor for class 11 students. He has 6 years of teaching experience which he couples with an energetic attitude and a vision of making any subject easy for the students. Over the years he has developed skills with a capability of understanding the requirements of the students. This...

Read full article >

Swati is a renowned Hindi tutor with 7 years of experience in teaching. She conducts classes for various students ranging from class 6- class 12 and also BA students. Having pursued her education at Madras University where she did her Masters in Hindi, Swati knows her way around students. She believes that each student...

Read full article >

Sandhya is a proactive educationalist. She conducts classes for CBSE, PUC, ICSE, I.B. and IGCSE. Having a 6-year experience in teaching, she connects with her students and provides tutoring as per their understanding. She mentors her students personally and strives them to achieve their goals with ease. Being an enthusiastic...

Read full article >

Looking for Class 12 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 12 Tuition Classes?

The best tutors for Class 12 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 12 Tuition with the Best Tutors

The best Tutors for Class 12 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more