Take Class 12 Tuition from the Best Tutors
Search in
Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
(i). f(x) = x2
(ii). g(x) = x3 − 3x
(iii). h(x) = sinx + cosx, 0 <
(iv). f(x) = sinx − cos x, 0 < x < 2π
(v). f(x) = x3 − 6x2+ 9x + 15
(vi).
(vii).
(viii).
(i) f(x) = x2
Thus, x = 0 is the only critical point which could possibly be the point of local maxima or local minima of f.
We have, which is positive.
Therefore, by second derivative test, x = 0 is a point of local minima and local minimum value of f at x = 0 is f(0) = 0.
(ii) g(x) = x3 − 3x
∴ g'(x) = 3x2 − 3
Now,
g'(x) = 0 ⇒ 3x2 = 3 ⇒ x = ±±1
g''(x) = 6x
g''(1) = 6 > 0
g''(−1) = −6 < 0
By second derivative test, x = 1 is a point of local minima and local minimum value of g at x = 1 is g(1) = 13 − 3 = 1 − 3 = −2. However,
x = −1 is a point of local maxima and local maximum value of g at
x = −1 is g(−1) = (−1)3 − 3 (− 1) = − 1 + 3 = 2.
(iii) h(x) = sinx + cosx, 0 < x <
Therefore, by second derivative test, is a point of local maxima and the local maximum value of h at is
(iv) f(x) = sin x − cos x, 0 < x < 2π
∴ f'(x) = cosx+sinx
f"(x)=0⇒cosx=−sinx⇒tanx=−1⇒
f''(x)=−sinx+cosx
f''
f''
Therefore, by second derivative test, is a point of local maxima and the local maximum value of f at is
However, is a point of local minima and the local minimum value of f at is .
(v) f() =3 − 62 + 9 + 15
∴f'()=3-12+9
f'()=0=3(-4+3)=0
=3(-1)(-3)=0
=1,3
Now f"()=6-12=6(-2)
f"(1)=6(1-2)=-6<0
f"(3)=6(3-2)=6>0
Therefore, by second derivative test, x = 1 is a point of local maxima and the local maximum value of f at x = 1 is f(1) = 1 − 6 + 9 + 15 = 19. However, x = 3 is a point of local minima and the local minimum value of f at x = 3 is f(3) = 27 − 54 + 27 + 15 = 15.
(vi)
Since x > 0, we take x = 2.
Therefore, by second derivative test, x = 2 is a point of local minima and the local minimum value of g at x = 2 is g(2) =
(vii)
Now, for values close to x = 0 and to the left of 0,Also, for values close to x = 0 and to the right of 0,.
Therefore, by first derivative test, x = 0 is a point of local maxima and the local maximum value of.
(viii)
Therefore, by second derivative test,is a point of local maxima and the local maximum value of f at is
read less
Related Questions
Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com
Ask a QuestionRecommended Articles
Meet Sandhya R, a B.Sc tutor from Bangalore
Sandhya is a proactive educationalist. She conducts classes for CBSE, PUC, ICSE, I.B. and IGCSE. Having a 6-year experience in teaching, she connects with her students and provides tutoring as per their understanding. She mentors her students personally and strives them to achieve their goals with ease. Being an enthusiastic...
Meet Mohammad Wazid, a skilled trainer for...
Mohammad Wazid is a certified professional tutor for class 11 students. He has 6 years of teaching experience which he couples with an energetic attitude and a vision of making any subject easy for the students. Over the years he has developed skills with a capability of understanding the requirements of the students. This...
Meet Raghunandan.G.H, a B. Tech Tutor from...
Raghunandan is a passionate teacher with a decade of teaching experience. Being a skilled trainer with extensive knowledge, he provides high-quality BTech, Class 10 and Class 12 tuition classes. His methods of teaching with real-time examples makes difficult topics simple to understand. He explains every concept in-detail...
Meet Urmila, an MBBS tutor from Bangalore
Urmila is a passionate teacher with over 8 years of experience in teaching. She is currently pursuing her Ph. D. She provides classes for Class 11, Class 12, MBBS and Medical tuition. Urmila began her career in teaching long before she became a teacher. She used to provide classes for foreign national students in her college...
Looking for Class 12 Tuition ?
Learn from the Best Tutors on UrbanPro
Are you a Tutor or Training Institute?
Join UrbanPro Today to find students near youThe best tutors for Class 12 Tuition Classes are on UrbanPro
The best Tutors for Class 12 Tuition Classes are on UrbanPro