Find: limit x→16 ( x¼ - 2 ) / (x - 16)
We can rewrite the problem as
limit x→16 ( x¼ - 16¼ )/(x - 16).
[ use standard formula of. limit x→a {(x^n - a^n)/(x - n)} = n a ^n-1}
Here n = 1/4 and a = 16 ∴ by substituting these values in the standard formula
limit x→16 ( x¼ - 2 )/(x - 16) = 1/4 • 16 ^ (1/4 - 1)
= 1/4 • 16 ^ (- 3/4)
= 1/4 • ( 1/8 )
= 1/8