UrbanPro

Take Class 9 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

In Figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE
intersects BC at F, show that
(i) ar (BDE) =  ar (ABC)
(ii) ar (BDE) =  ar (BAE)
(iii) ar (ABC) = 2 ar (BEC)
(iv) ar (BFE) = ar (AFD)
(v) ar (BFE) = 2 ar (FED)
(vi) ar (FED) =  ar (AFC)
[Hint : Join EC and AD. Show that BE || AC and DE || AB, etc.]

Asked by Last Modified  

1 Answer

Learn Exercise 9.4

Follow 1
Answer

Please enter your answer

(i) Let G and H be the mid-points of side AB and AC respectively. Line segment GH is joining the mid-points. Therefore, it will be parallel to third side BC and also its length will be half of the length of BC (mid-point theorem). ⇒ GH = BC and GH || BD ⇒ GH = BD = DC and GH || BD (D is the...
read more

(i) Let G and H be the mid-points of side AB and AC respectively.

Line segment GH is joining the mid-points. Therefore, it will be parallel to third side BC and also its length will be half of the length of BC (mid-point theorem).

⇒ GH = BC and GH || BD

⇒ GH = BD = DC and GH || BD (D is the mid-point of BC)

Consider quadrilateral GHDB.

GH ||BD and GH = BD

Two line segments joining two parallel line segments of equal length will also be equal and parallel to each other.

Therefore, BG = DH and BG || DH

Hence, quadrilateral GHDB is a parallelogram.

We know that in a parallelogram, the diagonal bisects it into two triangles of equal area.

Hence, Area (ΔBDG) = Area (ΔHGD)

Similarly, it can be proved that quadrilaterals DCHG, GDHA, and BEDG are parallelograms and their respective diagonals are dividing them into two triangles of equal area.

ar (ΔGDH) = ar (ΔCHD) (For parallelogram DCHG)

ar (ΔGDH) = ar (ΔHAG) (For parallelogram GDHA)

ar (ΔBDE) = ar (ΔDBG) (For parallelogram BEDG)

ar (ΔABC) = ar(ΔBDG) + ar(ΔGDH) + ar(ΔDCH) + ar(ΔAGH)

ar (ΔABC) = 4 × ar(ΔBDE)

Hence, 

(ii)Area (ΔBDE) = Area (ΔAED) (Common base DE and DE||AB)

Area (ΔBDE) − Area (ΔFED) = Area (ΔAED) − Area (ΔFED)

Area (ΔBEF) = Area (ΔAFD) (1)

Area (ΔABD) = Area (ΔABF) + Area (ΔAFD)

Area (ΔABD) = Area (ΔABF) + Area (ΔBEF) [From equation (1)]

Area (ΔABD) = Area (ΔABE) (2)

AD is the median in ΔABC.

From (2) and (3), we obtain

2 ar (ΔBDE) = ar (ΔABE)

Or, 

(iii)

ar (ΔABE) = ar (ΔBEC) (Common base BE and BE||AC)

ar (ΔABF) + ar (ΔBEF) = ar (ΔBEC)

Using equation (1), we obtain

ar (ΔABF) + ar (ΔAFD) = ar (ΔBEC)

ar (ΔABD) = ar (ΔBEC)

ar (ΔABC) = 2 ar (ΔBEC)

(iv)It is seen that ΔBDE and ar ΔAED lie on the same base (DE) and between the parallels DE and AB.

∴ar (ΔBDE) = ar (ΔAED)

⇒ ar (ΔBDE) − ar (ΔFED) = ar (ΔAED) − ar (ΔFED)

∴ar (ΔBFE) = ar (ΔAFD)

(v)Let h be the height of vertex E, corresponding to the side BD in ΔBDE.

Let H be the height of vertex A, corresponding to the side BC in ΔABC.

In (i), it was shown that

In (iv), it was shown that ar (ΔBFE) = ar (ΔAFD).

∴ ar (ΔBFE) = ar (ΔAFD)

= 2 ar (ΔFED)

Hence, 

(vi) Area (AFC) = area (AFD) + area (ADC)

Now, by (v), … (6)

Therefore, from equations (5), (6), and (7), we get:

read less
Comments

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Recommended Articles

While schools provide formal education to the children, the home is where they start learning about things informally. Parents think that schools will take the initiative to educate their children. Well, this is partially true, as parents also play an essential role in bringing up their child. For the development of particular...

Read full article >

Once over with the tenth board exams, a heavy percentage of students remain confused between the three academic streams they have to choose from - science, arts or commerce. Some are confident enough to take a call on this much in advance. But there is no worry if as a student you take time to make choice between - science,...

Read full article >

Appearing for exams could be stressful for students. Even though they might have prepared well, they could suffer from anxiety, tension etc. These are not good for their health and mind. However, following a few exam preparation tips can save them from all these and help them to score good marks. Let’s find out all...

Read full article >

With the mushrooming of international and private schools, it may seem that the education system of India is healthy. In reality, only 29% of children are sent to the private schools, while the remaining head for government or state funded education. So, to check the reality of Indian education system it is better to look...

Read full article >

Looking for Class 9 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 9 Tuition Classes?

The best tutors for Class 9 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 9 Tuition with the Best Tutors

The best Tutors for Class 9 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more