UrbanPro

Take Class 9 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

In Figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that:

(i)Triangle MBC ≅ Triangle ABD

(ii) ar (BYXD) = 2 ar (MBC)
(iii) ar (BYXD) = ar (ABMN)

(iv) Triangle FCB ≅ Triangle ACE
(v) ar (CYXE) = 2 ar (FCB)

(vi) ar (CYXE) = ar (ACFG)
(vii) ar (BCED) = ar (ABMN) + ar (ACFG)


Note : Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler
proof of this theorem in Class X.

Asked by Last Modified  

1 Answer

Learn Exercise 9.4

Follow 1
Answer

Please enter your answer

(i) We know that each angle of a square is 90°. Hence, ∠ABM = ∠DBC = 90º ⇒ ∠ABM + ∠ABC = ∠DBC + ∠ABC ⇒ ∠MBC = ∠ABD In ΔMBC and ΔABD, ∠MBC = ∠ABD (Proved above) MB = AB (Sides of square ABMN) BC = BD (Sides of square BCED) ∴...
read more

(i) We know that each angle of a square is 90°.

Hence, ∠ABM = ∠DBC = 90º

⇒ ∠ABM + ∠ABC = ∠DBC + ∠ABC

⇒ ∠MBC = ∠ABD

In ΔMBC and ΔABD,

∠MBC = ∠ABD (Proved above)

MB = AB (Sides of square ABMN)

BC = BD (Sides of square BCED)

∴ ΔMBC ≅ ΔABD (SAS congruence rule)

(ii) We have

ΔMBC ≅ ΔABD

⇒ ar (ΔMBC) = ar (ΔABD) ... (1)

It is given that AX ⊥ DE and BD ⊥ DE (Adjacent sides of square

BDEC)

⇒ BD || AX (Two lines perpendicular to same line are parallel to each other)

ΔABD and parallelogram BYXD are on the same base BD and between the same parallels BD and AX.

Area (BYXD) = 2 area (ΔMBC) [Using equation (1)] ... (2)

(iii) ΔMBC and parallelogram ABMN are lying on the same base MB and between same parallels MB and NC.

2 ar (ΔMBC) = ar (ABMN)

ar (BYXD) = ar (ABMN) [Using equation (2)] ... (3)

(iv) We know that each angle of a square is 90°.

∴ ∠FCA = ∠BCE = 90º

⇒ ∠FCA + ∠ACB = ∠BCE + ∠ACB

⇒ ∠FCB = ∠ACE

In ΔFCB and ΔACE,

∠FCB = ∠ACE

FC = AC (Sides of square ACFG)

CB = CE (Sides of square BCED)

ΔFCB ≅ ΔACE (SAS congruence rule)

(v) It is given that AX ⊥ DE and CE ⊥ DE (Adjacent sides of square BDEC)

Hence, CE || AX (Two lines perpendicular to the same line are parallel to each other)

Consider ΔACE and parallelogram CYXE

ΔACE and parallelogram CYXE are on the same base CE and between the same parallels CE and AX.

⇒ ar (CYXE) = 2 ar (ΔACE) ... (4)

We had proved that

∴ ΔFCB ≅ ΔACE

ar (ΔFCB) ≅ ar (ΔACE) ... (5)

On comparing equations (4) and (5), we obtain

ar (CYXE) = 2 ar (ΔFCB) ... (6)

(vi) Consider ΔFCB and parallelogram ACFG

ΔFCB and parallelogram ACFG are lying on the same base CF and between the same parallels CF and BG.

⇒ ar (ACFG) = 2 ar (ΔFCB)

⇒ ar (ACFG) = ar (CYXE) [Using equation (6)] ... (7)

(vii) From the figure, it is evident that

ar (BCED) = ar (BYXD) + ar (CYXE)

⇒ ar (BCED) = ar (ABMN) + ar (ACFG) [Using equations (3) and (7)]

read less
Comments

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Recommended Articles

Quality education does not only help children to get a successful career and life, but it also hugely contributes to society. The formal education of every child starts from school. Although there are numerous schools, parents find it challenging to choose the right one that would fit their child. It is difficult for them...

Read full article >

Learning for every child starts from a very young age. While the formal methods include school curriculums and private lessons, the informal methods include dancing, music, drawing, and various fun-filling activities. Playing games and practising these types of activities helps the children get out of boredom and...

Read full article >

Appearing for exams could be stressful for students. Even though they might have prepared well, they could suffer from anxiety, tension etc. These are not good for their health and mind. However, following a few exam preparation tips can save them from all these and help them to score good marks. Let’s find out all...

Read full article >

With the mushrooming of international and private schools, it may seem that the education system of India is healthy. In reality, only 29% of children are sent to the private schools, while the remaining head for government or state funded education. So, to check the reality of Indian education system it is better to look...

Read full article >

Looking for Class 9 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 9 Tuition Classes?

The best tutors for Class 9 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 9 Tuition with the Best Tutors

The best Tutors for Class 9 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more