Find the best tutors and institutes for Class 12 Tuition
Search in
Show that the given differential equation is homogeneous and solve them:
The given differential equation i.e., (x2 + xy) dy = (x2 + y2) dx can be written as:
This shows that equation (1) is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Differentiating both sides with respect to x, we get:
Substituting the values of v and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Show that the given differential equation is homogeneous and solve them:
The given differential equation is:
Thus, the given equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Differentiating both sides with respect to x, we get:
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Show that the given differential equation is homogeneous and solve them:
The given differential equation is:
Thus, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Show that the given differential equation is homogeneous and solve them:
The given differential equation is:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Show that the given differential equation is homogeneous and solve them:
The given differential equation is:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution for the given differential equation.
Show that the given differential equation is homogeneous and solve them:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of v and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Show that the given differential equation is homogeneous and solve them:
The given differential equation is:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Show that the given differential equation is homogeneous and solve them:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Show that the given differential equation is homogeneous and solve them:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Therefore, equation (1) becomes:
This is the required solution of the given differential equation.
Show that the given differential equation is homogeneous and solve them:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
x = vy
Substituting the values of x and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
For the given differential equation , find the particular solution satisfying the given condition:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Now, y = 1 at x = 1.
Substituting the value of 2k in equation (2), we get:
This is the required solution of the given differential equation.
For the given differential equation , find the particular solution satisfying the given condition:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Now, y = 1 at x = 1.
Substituting in equation (2), we get:
This is the required solution of the given differential equation.
For the given differential equation , find the particular solution satisfying the given condition:
Therefore, the given differential equation is a homogeneous equation.
To solve this differential equation, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Now, .
Substituting C = e in equation (2), we get:
This is the required solution of the given differential equation.
For the given differential equation , find the particular solution satisfying the given condition:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Now, y = 0 at x = 1.
Substituting C = e in equation (2), we get:
This is the required solution of the given differential equation.
For the given differential equation , find the particular solution satisfying the given condition:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the value of y and in equation (1), we get:
Integrating both sides, we get:
Now, y = 2 at x = 1.
Substituting C = –1 in equation (2), we get:
This is the required solution of the given differential equation.
A homogeneous differential equation of the form can be solved by making the substitution
For solving the homogeneous equation of the form, we need to make the substitution as x = vy.
Hence, the correct answer is C.
Which of the following is a homogeneous differential equation?
A.
B.
C.
D.
Function F(x, y) is said to be the homogenous function of degree n, if
F(λx, λy) = λn F(x, y) for any non-zero constant (λ).
Consider the equation given in alternativeD:
Hence, the differential equation given in alternative D is a homogenous equation.
How helpful was it?
How can we Improve it?
Please tell us how it changed your life *
Please enter your feedback
UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.
Find best tutors for Class 12 Tuition Classes by posting a requirement.
Get started now, by booking a Free Demo Class